Every 3D print starts as a digital 3D design file – like a blueprint – for a physical object. Trying to print without a design file is like trying to print a document on a sheet of paper without a text file. This design file is sliced into thin layers which is then sent to the 3D printer.
From here on the printing process varies by technology , starting from desktop printers that melt a plastic material and lay it down onto a print platform to large industrial machines that use a laser to selectively melt metal powder at high temperatures. The printing can take hours to complete depending on the size, and the printed objects are often post-processed to reach the desired finish.
Available materials also vary by printer type, ranging from plastics to rubber, sandstone, metals and alloys – with more and more materials appearing on the market every year.
A Brief History of 3D Printing
Although 3D printing is commonly thought of as a new ‘futuristic’ concept, it has actually been around for more than 30 years.
SLA-1, the first 3D printer invented by Chuck Hull in 1983
Chuck Hull invented the first 3D printing process called ‘stereolithography’ in 1983. In a patent, he defined stereolithography as ‘a method and apparatus for making solid objects by successively “printing” thin layers of the ultraviolet curable material one on top of the other’. This patent only focuses on ‘printing’ with a light curable liquid, but after Hull founded the company ‘3D Systems’, he soon realized his technique was not limited to only liquids, expanding the definition to ‘any material capable of solidification or capable of altering its physical state’. With this, he built the foundation of what we now know today as additive manufacturing (AM) – or 3D printing.
Until 2009 3D printing was mostly limited to industrial uses, but then the patent for fused deposition modeling (FDM) – one of the most common 3D printing technologies – expired.
Through the RepRap project’s mission to build a self-replicating machine, the first desktop 3D printer was born. As more and more manufacturers followed, what once cost $200,000 suddenly became available for below $2000, and the consumer 3D printing market took off in 2009.
UNTIL 2009 3D PRINTING WAS MOSTLY LIMITED TO INDUSTRIAL USES, BUT THEN PATENTS STARTED EXPIRING
3D printer sales have been growing ever since, and as additive manufacturing patents continue to expire, more innovations can be expected in the years to come. There are now roughly 300,000 consumer 3D printers in the world – and this figure is doubling every year.
Carbon3D, one of the fastest 3D printing technologies currently under development
The Pros and Cons of 3D Printing
It’s crucial to understand that 3D printing is a rapidly developing technology, which comes with its set of inherent benefits, but also lags behind traditional manufacturing processes in some aspects. We collected examples from both sides to help you get a grasp of these factors and to see where the technology is headed in the near future.
- Pro Create complex designs
3D printing lets designers create complex shapes and parts – many of which cannot be produced by conventional manufacturing methods. By the natural laws of physics, manufacturing through additive methods means that complexity doesn’t have a price; elaborate product designs with complicated design features now cost just as much to produce as simple product designs that follow all the traditional rules of conventional manufacturing.
- Pro Customize each and every item
Have you ever wondered why we purchase our clothing in standardized sizes? With traditional production methods, it’s simply cheaper to make and sell products at an affordable price to the consumer. Alternatively, 3D printing allows for easy customization; one only needs to change the design digitally to make changes with no additional tooling or other expensive manufacturing process required to produce the final product. The result? Each and every item can be customized to meet a user’s specific needs without additional manufacturing costs.
- Pro No need for tools and molds, lower fixed costs
When metal casting or injection molding, each part of each product requires a new mold – a factor that can balloon manufacturing costs very quickly. To recoup these upfront manufacturing costs, most companies rely on thousands of the same item being sold. Alternatively, since 3D printing is a “single tool” process there is no need to change any aspect of the process and no additional costs or lead times are required between making an object complex or simple. Ultimately, this leads to substantially lower fixed costs.
- Pro Speed and ease of prototyping, faster and less risky route to market
Since there is no expensive tooling required to create objects through 3D printing, it is particularly a cost effective method for designers or entrepreneurs who are looking to do market testing or small production runs – or even launch their products through crowdfunding sites like Kickstarter. At this stage, it is also easy for design changes to be made without compromising more formal – and expensive – manufacturing orders. Thus, 3D printing offers a much less risky route to market for those who are looking into manufacturing a product idea.
Many conventional manufacturing processes are subtractive: you start with a block of material, cut it, machine it, and mill it until it has been processed as your intended design. For many products – such as a bracket for an airplane – it’s normal to lose 90% of the raw material during this process.
Alternatively, 3D printing is an additive process; you create an object from the raw material layer by layer. Naturally, when an object is manufactured this way, it only uses as much material that is needed to create that particular object. Additionally, most of these materials can be recycled and repurposed into more 3D printed objects.
- Con Higher cost for large production runs
Despite all of the benefits of manufacturing through additive methods, 3D printing is not yet competitive with conventional manufacturing processes when it comes to large production runs. In most cases, this turning point is between 1,000 to 10,000 units, depending on the material and the design. As the price of printers and raw materials continue to decrease, however, the range of efficient production is expected to increase further.
- Con Less material choices, colors, finishes
Despite there being more than six-hundred 3D printing materials available today – most of which are plastics and metals – the choices are still limited compared to conventional product materials, colors and finishes. However, this field is rapidly catching up, the number of new materials added to the 3D printing palette is growing rapidly every year including wood, metals, composites, ceramics, and even chocolate.
- Con Limited strength and endurance
In some 3D printing technologies the part strength is not uniform due to the layer-by-layer fabrication process. As such, parts that have been 3D printed are often weaker than their traditionally manufactured counterparts. Repeatability is also in need of improvement as well; parts made on different machines might have slightly varying properties. However, as technical improvements continue to be made on new continuous 3D printing processes like Carbon3D, these limits will likely to vanish in the near future.
Although we may not be able to 3D print objects that have cutting edge tolerances like an iPhone, 3D printing is still a very capable method of creating objects at a precision of around 20-100 microns – or about the height of a single sheet of paper. For users who are creating objects with few tolerances and design details, 3D printing offers a great way for making products real. For objects requiring more working parts and finer details – such as the silent switch on the iPhone – it’s difficult to compete with the high precision capabilities of certain manufacturing processes.
Who is using 3D printing?
One of the greatest things about 3D printing is that it can be beneficial for anyone, regardless of industry or profession. Here we collected some common examples to show how people use 3D printing and why they chose the technology as their preferred prototyping of manufacturing method for specific use cases.
3D printing is no stranger to the automotive industry when it comes to both prototypes as well as finished parts. Among others, many Formula 1 racing teams have been using 3D printing for prototyping, testing and ultimately, creating custom car parts that are used in competitive races. Similarly, Swedish car manufacturer Koenigsegg uses 3D printing to manufacture the variable turbocharger for their One:1 model – a car that has an astonishing 1:1 HP-to-Kg curb weight ratio. The fully metal part is not only extremely lightweight, but can also endure the brute force of hypercar combustion and demanding racetrack conditions.
.
Did you know that the majority of today’s hearing aids are 3D printed? The medical and prosthetics field has largely benefited from the adoption of 3D printing. Custom shapes such as hearing aids no longer require manual labor, with 3D printing the can be made with the click of a button. This means substantially lower costs and lower production times.
.
Similar to hearing aids, prosthetics and other assistive medical devices, braces and retainers are tailored specifically for the needs of their end user. Unsurprisingly, this used to pose a problem due to the time and energy required to manually produce each product. With the introduction of 3D printing in the dental and orthodontics fields, this is now a problem of the past. Today, a dental surgeon or orthodontist can now 3D scan a client’s jaw and teeth and digitally construct and manufacture custom braces unique to the end user. The dental industry as a whole has fully embraced 3D printing and there are even dedicated 3D printer models designed specifically for manufacturing dental aids and molds.
.
Perhaps one of the most telling examples of how 3D printing is revolutionizing the lives of many for the better comes in the form of the e-NABLE prosthetic hand. The free and easy-to-make 3D printed prosthetic hand is designed to be easily created for children in need of a prosthetic device. Among other reasons why the e-NABLE project is revolutionary is because as children grow, they also outgrow their prosthetic devices. When produced through conventional manufacturing methods, these devices can cost tens of thousands of dollars. With 3D printing, the children – along with a global community of engineers and designers who have generously donated their time and resources – can create their own custom prosthetic devices and manufacture them at very affordable prices.
GE Aviation and Safran have developed a method to 3D print fuel nozzles for jet engines. The technology allows engineers to replace complex assemblies with a single part that is lighter than previous designs, saves weight and boosts a jet engine’s fuel efficiency by up to 15%. GE’s new LEAP engines embody 19 of these 3D printed fuel nozzles and will power new narrow-body planes like the Boeing 737MAX and the Airbus A320neo.
Elon Musk’s commercial space company SpaceX used 3D printing to manufacture the engine chambers for their SuperDraco engine; the engine that will be installed on the company’s Dragon spacecraft. This decision cut lead-time drastically and took the concept from the drawing board to first firing in only three months. The engine chambers are printed using Inconel, a high-performance super alloy, and has been tested successfully dozens of times.
Since the earliest days of cinema, the props used in movies were the domain of professionals working by hand for large movie studios. With the introduction of 3D printing, however, making props has become more accessible and affordable for everybody. This particular prop is made by Vitaly Bulgarov, a concept designer from California in collaboration with Factor 31, a Los Angeles-based digital fabrication studio.
As a small business that creates modular wall art, Mak Goods needed a solution for creating a high-quality prototype for a new product concept. Using selective laser sintering (SLS), the company was able to 3D print a short production run of 4,000 pieces which were used to gain valuable feedback from their user test group. At this stage, it was easy to make design refinements and solve problems before committing to more formal – and expensive – conventional manufacturing orders.
Before the introduction of 3D printing into the field of architecture, creating scale models was an extremely laborious and time-consuming process that was vital for architects to communicate their design intent. Today, both large firms and independent architects can quickly and easily create 3D printed scale model directly from their existing CAD data that is used for developing blueprints. Depending on the desired level of communication, these 3D printed models can be printed in multiple materials and realistic colors.
.
3D printing offers students from multiple fields of study an affordable solution to make their concepts tangible in the early stages of the design process. Through working iteratively with prototypes, students can quickly learn from the models, refine them and gain practical experience towards developing the ideal design solution. This particular bicycle project was made by Industrial Engineering students from the Fontys Technical University of Applied Sciences who translated their digital design into a 3D printed scale model.
As a design entrepreneur, Omar Rada founded his company with one goal: to create a professional chef’s knife on a home cook’s budget. The result is the Misen Kitchen Knife, which went on to raise a staggering $1,083,344 USD from 13,116 backers on Kickstarter. The use of 3D printing in their design process helped Omar and his design team refine the knife into a suitable design that could be manufactured at a low cost that was then passed onto the consumer. “We started printing just the knife handle as a toe-in-water approach” explains Rada. “Once we were comfortable with the handle design, we then started thinking about the blade. After many 3D prints later, we combined everything into a final knife design that we were able to use as a reference for our final material prototypes.”
.
As an engineer with an eye for good design, Rob Halifax felt that some common product categories are universally “ugly”. With his engineering knowledge, he was able to take matters into his own hands and began the process of redesigning his own razor. Using 3D printing, he was able to work on multiple iterations until he arrived at a design solution that he felt was the best. Soon after, he turned his idea into a successful Kickstarter campaign, which led to a sustainable business. “3D printing has been instrumental in turning my idea into a business,” says Halifax. “There is no other way we could have got this far so quickly while managing to keep costs down.”
.
As an industrial designer, Ken Giang enjoys designing and 3D printing drones as a hobby in his free time. “One of the benefits of using 3D printing is that I can produce unlimited spare parts without relying on external vendors except for the electronics,” he explains. “Furthermore, I can develop and customize my multi-copter designs around my particular needs. This motivates me to keep designing parts and be creative to develop new and better concepts.”
.
Although it’s taken awhile to get here, mass customization of consumer goods is becoming more achievable through 3D Printing. A pioneer on this front is Adidas, who developed the first 3D printed midsole as a component in a ready-to-wear shoe. This midsole is tailored specifically to the needs of the individual end user and can be manufactured on-demand, thus eliminating the need for shipping, factories, and excessive raw materials. Soon, Adidas could customize and build each unique shoe design at a rate that could still be considered “mass producing” them.
.
One of the first examples of 3D printed consumer products is the Print+ headphones. They’re shipped as a kit, which includes all the electronics and the ear cushions in an environment friendly box that’s the fraction of the size of a regular headphone. The rest of the parts are sent to the customer digitally, which they can 3D print themselves or get 3D printed locally. The end product is a headphone that’s fully customizable, upgradeable and easy to fix.
www.iprinthub.co